Locally free classgroups of groups of prime power order
نویسندگان
چکیده
منابع مشابه
Finite groups with $X$-quasipermutable subgroups of prime power order
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
متن کاملfinite groups with $x$-quasipermutable subgroups of prime power order
let $h$, $l$ and $x$ be subgroups of a finite group$g$. then $h$ is said to be $x$-permutable with $l$ if for some$xin x$ we have $al^{x}=l^{x}a$. we say that $h$ is emph{$x$-quasipermutable } (emph{$x_{s}$-quasipermutable}, respectively) in $g$ provided $g$ has a subgroup$b$ such that $g=n_{g}(h)b$ and $h$ $x$-permutes with $b$ and with all subgroups (with all sylowsubgroups, respectively) $v$...
متن کاملA Database of Groups of Prime-power Order
The design, implementation and performance of TwoGroups, a deductive database for the 58,761 groups of order 2n, (n # 8), is described. The system is implemented in NU-Prolog, a Prolog system with built-in functions for creating and using deductive databases. TwoGroups has a set-theoretic query language, which provides users with a familiar notation to access the data. The paper describes the d...
متن کاملTwo-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملGroups of Prime Power Order as Frobenius-wielandt Complements
It is known that the Sylow subgroups of a Frobenius complement are cyclic or generalized quaternion. In this paper it is shown that there are no restrictions at all on the structure of the Sylow subgroups of the FrobeniusWielandt complements that appear in the well-known Wielandt's generalization of Frobenius' Theorem. Some examples of explicit constructions are also given. 0. Introduction Let ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1978
ISSN: 0021-8693
DOI: 10.1016/0021-8693(78)90165-5